Some descriptive set theory and core models
نویسندگان
چکیده
منابع مشابه
Some descriptive set theory
Definition 1.1. Let (X, τ) be a topological space. A subset D ⊆ X is called dense if D ∩O 6= ∅ for every nonempty open set O ⊆ X. X is called separable if X has a countable dense subset. X is called metrizable if there is a metric d on X such that the topology τ is the same as the topology induced by the metric. The metric is called complete if every Cauchy sequence converges in X. Finally, X i...
متن کاملDescriptive Set Theory Problem Set
Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has countable length, i.e. γ is countable. Hint: Use the same idea as in the proof of (a). (c) Show that every monotone sequence (Uα)α<ω1 open subsets of X eventually stabilizes, i.e. there is γ < ω1 such that for all α < ω1 with α ≥ γ, we have Uα = Uγ. Hint: Use the regularity of ω1. (d) Conclude that parts (a), (b) and (c)...
متن کاملResults in descriptive set theory on some represented spaces
Descriptive set theory was originally developed on Polish spaces. It was later extended to $\omega$-continuous domains [Selivanov 2004] and recently to quasi-Polish spaces [de Brecht 2013]. All these spaces are countably-based. Extending descriptive set theory and its effective counterpart to general represented spaces, including non-countably-based spaces has been started in [Pauly, de Brecht ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 1988
ISSN: 0168-0072
DOI: 10.1016/0168-0072(88)90012-7